top of page

КВАНТОВЫЕ ВЫЧИСЛЕНИЯ И АТОМ-ПОЛЕВЫЕ ПЕРЕПУТАННЫЕ СОСТОЯНИЯ В МОДЕЛИ ТИПА ДЖЕЙНСА-КАММИНГСА

АППАРАТНЫЙ ПОДХОД К МОДЕЛИРОВАНИЮ КВАНТОВЫХ ВЫЧИСЛЕНИЙ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМА ОПТИМИЗАЦИИ 

Квантовые гейты

Квантовые вычисления

КВАНТОВЫЕ ВЫЧИСЛЕНИЯ

Идея (но не ее реализация) квантовых вычислений достаточно проста и интересна. Но даже для ее поверхностного понимания необходимо ознакомиться с некоторыми специфическими понятиями квантовой физики.

Прежде чем рассматривать обобщенные квантовые понятия вектора состояния и принципа суперпозиции, разберем простой пример поляризованного фотона. Поляризованный фотон — это пример двухуровневой квантовой системы. Состояние поляризации фотона можно задать вектором состояния, определяющим направление поляризации. Поляризация фотона может быть направлена вверх или вниз, поэтому говорят о двух основных, или базисных, состояниях, которые обозначают как |1> и |0>  .

Данные обозначения (бра/кэт-обозначения) были введены Дираком и имеют строго математическое определение (векторы базисных состояний), которое обусловливает правила работы с ними, однако, дабы не углубляться в математические дебри, мы не станем детально рассматривать эти тонкости.

Возвращаясь к поляризованному фотону, отметим, что в качестве базисных состояний можно было бы выбрать не только горизонтальное и вертикальное, но и любые взаимно ортогональные направления поляризации. Смысл базисных состояний заключается в том, что любая произвольная поляризация может быть выражена как линейная комбинация базисных состояний, то есть a|1> +b|0> . Поскольку нас интересует только направление поляризации (величина поляризации не важна), то вектор состояния можно считать единичным, то есть |a|^2+|b|^2 = 1.

Теперь обобщим пример с поляризацией фотона на любую двухуровневую квантовую систему.

Предположим, имеется произвольная двухуровневая квантовая система, которая характеризуется базисными ортогональными состояниями |1 > и |0> . Согласно законам (постулатам) квантовой механики (принцип суперпозиции) возможными состояниями квантовой системы будут также суперпозиции y= a|1> +b|0> , где a и b — комплексные числа, называемые амплитудами. Отметим, что аналога состояния суперпозиции в классической физике не существует.

Один из фундаментальных постулатов квантовой механики утверждает, что для того, чтобы измерить состояние квантовой системы, нужно ее разрушить. То есть любой процесс измерения в квантовой физике нарушает первоначальное состояние системы и переводит ее в новое состояние. Понять это утверждение не так-то просто, а потому остановимся на нем более подробное.

Вообще, понятие измерения в квантовой физике играет особую роль, и не стоит рассматривать его как измерение в классическом понимании. Измерение квантовой системы происходит всякий раз, когда она приходит во взаимодействие с «классическим» объектом, то есть с объектом, подчиняющимся законам классической физики. В результате такого взаимодействия состояние квантовой системы изменяется, причем характер и величина этого изменения зависят от состояния квантовой системы и потому могут служить его количественной характеристикой.

В связи с этим классический объект обычно называют прибором, а о его процессе взаимодействия с квантовой системой говорят как об измерении. Необходимо подчеркнуть, что при этом отнюдь не имеется в виду процесс измерения, в котором участвует наблюдатель. Под измерением в квантовой физике подразумевается всякий процесс взаимодействия между классическим и квантовым объектами, происходящий помимо и независимо от какого-либо наблюдателя. Выяснение роли измерения в квантовой физике принадлежит Нильсу Бору.

Итак, чтобы измерить квантовую систему, необходимо каким-то образом подействовать на нее классическим объектом, после чего ее первоначальное состояние будет нарушено. Кроме того, можно утверждать, что в результате измерения квантовая система будет переведена в одно из своих базисных состояний. К примеру, для измерения двухуровневой квантовой системы требуется как минимум двухуровневый классический объект, то есть классический объект, который может принимать два возможных значения: 0 и 1. В процессе измерения состояние квантовой системы будет преобразовано в один из базисных векторов, причем если при измерении классический объект принимает значение равное 0, то квантовый объект преобразуется к состоянию |0> , а в случае если классический объект принимает значение равное 1, то квантовый объект преобразуется к состоянию |1> .

Таким образом, хотя квантовая двухуровневая система может находиться в бесчисленном множестве состояний суперпозиции, но в результате измерения она принимает только одно из двух возможных базисных состояний. Квадрат модуля амплитуды |a|^2 определяет вероятность обнаружения (измерения) системы в базисном состоянии |1>  , а квадрат модуля амплитуды |b|^2 — в базисном состоянии |0> .

Однако вернемся к нашему примеру с поляризованным фотоном. Для измерения состояния фотона (его поляризации) нам потребуется некоторое классическое устройство с классическим базисом {1,0}. Тогда состояние поляризации фотона a|1>+b|0> будет определено как 1 (горизонтальная поляризация) с вероятностью |a|^2 и как 0 (вертикальная поляризация) с вероятностью |b|^2.

Поскольку измерение квантовой системы приводит ее к одному из базисных состояний и, следовательно, разрушает суперпозицию (к примеру, при измерении получается значение равное |1>  ), то это означает, что в результате измерения квантовая система переходит в новое квантовое состояние и при следующем измерении мы получим значение |1>   со стопроцентной вероятностью.

Вектор состояния двухуровневой квантовой системы называется также волновой функцией квантовых состояний y двухуровневой системы, или, в интерпретации квантовых вычислений, кубитом (quantum bit, qubit). В отличие от классического бита, который может принимать только два логических значения, кубит — это квантовый объект, и число его состояний, определяемых суперпозицией, неограниченно. Однако еще раз подчеркнем, что результат измерения кубита всегда приводит нас к одному из двух возможных значений.

Теперь рассмотрим систему из двух кубитов. Измерение каждого из них может дать значение классического объекта 0 или 1. Поэтому у системы двух кубитов имеется четыре классических состояния: 00, 01, 10 и 11. Аналогичные им базисные квантовые состояния: |00> , |01> , |10>  и |11> . Соответствующий вектор квантового состояния записывается в виде a|00> + b|01>+ c|10> + d|11> , где |a|^2 — вероятность при измерении получить значение 00, |b|^2 — вероятность получить значение 01 и т. д.

В общем случае если квантовая система состоит из L кубитов, то у нее имеется 2^L возможных классических состояний, каждое из которых может быть измерено с некоторой вероятностью. Функция состояния такой квантовой системы запишется в виде:

                                                                                                                                                                           ,

где |n>  — базисные квантовые состояния (например, состояние |001101> , а |cn|^2 — вероятность нахождения в базисном состоянии |n> .

Для того чтобы изменить состояние суперпозиции квантовой системы, необходимо реализовать селективное внешнее воздействие на каждый кубит. С математической точки зрения такое преобразование представляется унитарными матрицами размера 2^Lx2^L. В результате будет получено новое квантовое состояние суперпозиции.

ПОЛЕЗНЫЕ РЕСУРСЫ
bottom of page